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Abstract—We consider a class of well-known high-order trinomial linear difference equations
and analyze the non-asymptotic behavior of their solutions under non-zero initial conditions
from the unit box. It is shown that, for certain subsets of coefficients in the stability domain,
there always exist initial conditions leading to peak, a large deviation of solutions from the
equilibrium position, and that these deviations may take arbitrarily large values. Various
special cases are studied, numerical examples are presented.
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1. INTRODUCTION

Since relatively recently, there is an interest in studying and understanding the phenomenon of
peak of solutions of stable differential or difference equations caused by the presence of nonzero
initial conditions in the absence of exogenous disturbances. By peak we mean possible large devi-
ations of solutions from the nonzero initial conditions at finite time intervals. The importance of
this line of research is stipulated by many reasons. Obviously, such effects are highly undesirable in
the engineering practice [1, 2] and may lead to malfunctioning or failure of digital control systems.
Next, if a linearized model is adopted as a simplified description of a real-life nonlinear system
around an equilibrium point, then, due to possible large deviations, the trajectory may leave the
domain of attraction of the original nonlinear system so that the linear model is no more valid.
Finally, the convergence of some powerful modern methods of minimization may happen to be
non-monotonic, and this phenomenon is to be explained; see [3] for a very recent publication.

About ten years ago, Boris Theodorovich Polyak took a keen interest in this line of research,
and since then he has written many papers on the subject; among the most important ones we
mention [3–8], which are devoted to the analysis of the peak phenomenon both in continuous
time (differential equations) and discrete time (difference equations). With this interest Boris
Theodorovich inspired many of his students and followers, including the author of the present
paper, where the peak effect is analyzed for a class of difference equations.

Whereas the continuous-time case is somewhat explored (e.g., see paper [5] with extended bib-
liography, including the cornerstone paper [9]), very little attention has been paid to difference

equations. There are just scattered results in the literature, related to many-dimensional discrete-
time systems and to numerical construction of upper bounds on peaks [10, 11]; adaptive control
problems [12]; dependence of peaks on the degree of controllability of the system [13]. However, to
the best of our knowledge, the simplest and most natural formulations of the problem, such as the

587



588 SHCHERBAKOV

evaluation of peaks in scalar difference equations, have not been considered. Perhaps the first work
in this direction is [6], where the exact closed-form expression for peaks and lower bounds were
obtained for several root locations of the characteristic polynomial and various initial conditions;
certain specific equations were analyzed; equations with nonzero deterministic noise were studied.
The exploited theory and methods of difference equations are given in [14].

Yet another interesting direction of research, the development of a probabilistic approach to
the evaluation of peak is worth mentioning. Within this approach, the coefficients and/or initial
conditions of a stable difference equation are assumed to be random, and an attempt is made to
estimate the probability of the presence of peak, its mathematical expectation, etc.; see [8, 15].

In this paper, we analyze peak effects as applied to a class of trinomial equations specific to
population dynamics problems using linearized models. The first notable paper studying this
equation is [16] (to date, this paper has 257 citations in the Google Scholar bibliographic database),
where necessary and sufficient conditions for its asymptotic stability were obtained in terms of its
the coefficients; namely, an explicit description of the stability domain on the plane of the two
coefficients was given.

These results were later generalized toward the presence of multiple delays [17, 18], complex-
valued coefficients [19], vector equations [20, 21], finding alternative proofs for the shape of the
stability domain [18], applications to continuous systems with delays [22], etc.; we also note [14],
where instructive discussions are given.

A nice feature of this equation is that, having just three terms, it may exhibit nontrivial and
diverse behavior for various values of the coefficients and initial conditions. Also, since just two
coefficients are involved, the analysis of solutions is easier to perform in terms of the coefficients,
not the roots.

The first results on possible peaks in this equation were obtained in [6]; here, we continue this
line of research and find exact formulae for the magnitude of peak and peak instant. We show that,
in certain situations, peak is unavoidable; moreover, its magnitude, as well as the peak instant may
take arbitrarily large values.

2. NOTATION, DEFINITIONS, STATEMENT OF THE PROBLEM

In what follows, the standard notaion is used: R
n is the field of real numbers; the sign ≫

means “much greater than”; the symbol ≈ means “is approximately equal to”; the symbol :=
corresponds to “denote by”; the symbols ⌊·⌋ and ⌈·⌉ denote rounding to the nearest integer toward
negative/positive infinity; | · | is the absolute value of a number; λi is the ith root of a polynomial;
e is the base of the natural logarithm function; for integers s > t > 0, the binomial coefficient is

denoted by

(
s
t

)
.

We consider the following scalar, linear homogenous trinomial equation of order n+ 1:

xk+1 − axk + bxk−n = 0, k = 1, 2, . . . (1)

with real coefficients a, b and characteristic polynomial

p(λ) = λn+1 − aλn + b.

The initial conditions x(0) = (x−n, . . . , x−1, x0)∈R
n+1 are assumed to have the unit norm:

‖x(0)‖∞ = 1. This is without loss of generality, since the solution is a linear function in x(0).

Of our interest are only asymptotically stable equations (1); i.e. those having roots λi inside the
unit disk on the complex plane, |λi| < 1. Denote by Sn ⊂ R

2 the stability domain of equation (1)
on the coefficient plane; obviously, it is nonempty. For (a, b)∈Sn, the solutions assymtotically tend
to zero; we are interested in the analysis of behavior of solutions for finite values of k.
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For given (a, b)∈Sn and x(0), let

κ(a, b, x(0)) = max
k>1

|xk|

denote the maximum absolute value of the solution (trajectory). We omit the arguments in
κ(a, b, x(0)) unless it leads to any ambiguity. The solution is said to experience peak if this quantity
is greater than unity, and the associated number of iteration k∗ = argmax

k
|xk| is referred to as the

peak instant.

We will also try to characterize the peak domain, a part Pn of the stability domain Sn, such
that for every point in this domain peak is observed for at least one initial condition. Of interest
are also peak domains associated with specific initial conditions.

The linearized model (1) of population dynamics was introduced in [23]; the quantities involved
have the following physical meaning: k is the year of observation of the populaion, xk is change of
size of the population in year k, n is the fertility age, a is the survival coefficient, b is the recruitment
of the pulation (birth rate). The initial conditions correspond to the size of the population in the n
years preceding the start of monitoring the population using this model. The stability of the
equation is synonimous to the invariance of the population size in time, whereas peak of solutions
means an abnormally large current increase or decline. Both are undesirable from the point of view
of ecological equilibrium.

3. MAIN RESULTS

3.1. Stability Domain and Peak Domain on the Plane of Coefficients of equation (1)

Figure 1 depicts the stability domain of equation (1) on the coefficient plane; see [16, 18].

It is easy to show that, for the coefficients in the Cohn domain C = {a, b : |a|+ |b| < 1} (dotted
line) there is no peak, no matter what the initial conditions are. We are only intrested in domains
composed of the sets I and II (“winglets”). For every pont (a, b) in these sets we have |a|+ |b| > 1,
and peak-promoting initial conditions do exist; see Theorem 1 in [15].

A very simple and accurate upper bound on the the area of the peak domain Pn can be derived.
Indeed, from the eqution of the boundary of Sn (see [16]) the right winglet is seen to be located in the
triangle with the vertices (0, 1), (1+ 1/n, 1/n), and (1, 0) and having area 1/n. The corresponding
left triangle has the same area, and since Vol(C) = 2, we obtain

Vol(Pn) <
1

n+ 1
Vol(Sn)

for n > 1 (for n = 1 we have equality in the estimate above). By symmetry (see Fig. 1) this
also holds true for even vlues of n. Therefore, the “probability” for equation (1) to experience

Fig. 1. The stability fomain Sn of equation (1) for n = 2 (left) and n = 3 (right).
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peak decreases as the order of equation grows (for instance, already for n = 7 we have Vol(Pn) ≈
0.08 ×Vol(Sn)); however, in the sequel we will show that the peak magnitude can take arbitrarily
large values. Note that, for equations of general type, the situation is quite the opposite; i.e., as
the order of equation grows, peak effects are a typical phenomena; see [15].

3.2. Magnitude of Peak under Canonical Initial Conditions

We now turn to the evaluation of the peak magnitude in equation (1). For known degree n,
coefficients (a, b)∈Pn, and initial conditions x(0), the solution can be found numerically by iterating
over k. However, we are interested in closed-form estimates of the peak values. In general, this is
not doable, and below we provide estimates of the magnitude of peak and peak instant for specific
initial conditions and certain sets of the coefficients.

In what follows, we analyze the nonasymptotic behavior of solutios under “canonical” initial
conditions

x(0) = (0, . . . , 0, 1). (2)

3.2.1. A simple lower bound. With x(0) = (0, . . . , 0, 1), equation (1) immediately implies that
the first n iterations xk do not depend on b :

xk = ak, k = 1, 2, . . . , n, (3)

meaning that peak is observed for all (a, b)∈Sn, |a| > 1; in other words, the domains I are peak
domains for x(0) = (0, . . . , 0, 1). Hence, the magnitude of peak can be evaluated from below by

κ > κ∗ = |a|n > 1. (4)

However, clearly, this estimate may happen to be rather poor.

Example 1. For n = 10 and ε = 0.001, consider the coefficients a = n+1
n − ε = 1.099 and

b = 1
n = 0.1. We have κ∗ = 2.5703, whereas the true value of the peak magnitude obtined by

direct computations is equal to κ = 13.0732, and it is attained at k = 111 ≫ n.

3.2.2. An exact conbinatorial formula. So, for the initial conditions x(0) as in (2), we have

xk = ak := Xk,0, 0 6 k 6 n.

At the next n+1 steps, the value of xk depends on b, and straightforward though lengthy compu-
tations yield

xk = Xk,0 −

(
k − n
1

)
ak−(n+1)b

.
= Xk,0 −Xk,1

for n+ 1 6 k 6 2(n + 1)− 1,

where the b-dependent term

(
k − n
1

)
ak−(n+1)b is denoted by Xk,1.

Over the third (n+ 1)-tuple of iterations, the solution depends also on b2:

xk = Xk,0 −Xk,1 +

(
k − 2n

2

)
ak−2(n+1)b2

.
= Xk,0 −Xk,1 +Xk,2

for 2(n+ 1) 6 k 6 3(n + 1)− 1,

where the b2-dependent term

(
k − 2n

2

)
ak−2(n+1)b2 is denoted by Xk,2, and so forth.

By iterating in k and collecting the formulae above, we obtain the following result.
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Fig. 2. The parametric family (6) of the coefficients of equation (1).

Assertion 1. The solution xk of equation (1) under initial conditions (2) has the following form:

xk =

⌊k/(n+1)⌋∑

j=0

(−1)j
(
k − jn

j

)
ak−j(n+1)bj, k = 0, 1, . . . . (5)

The formula above presents the solution of (1), (2) in closed form; however, it can hardly be
used to evaluate the peak magnitude and instant.

3.2.3. A parametric family of equations (1). Following [6], consider the family of coefficients

a = 1 +
α

n
, 0 < α < 1, b = an+1 nn

(n + 1)n+1
, (6)

where α is a parameter. It was shown in [6] that the maximum in absolute value root of equa-
tion (1), (6) is equal to

ρ =
an

n+ 1
=

n+ α

n+ 1

and it has multiplicity two.

From the equation of the boundary of Sn (e.g., see [14], Theorem 5.3) it follows that the
point (a, b) (6) belongs to the set I (part of the right winglet; the anlysis of the left winglet
is the same due to symmetry). This parametric family is depicted by the dotted line in Fig. 2.

The behavior of solutions of this equation is easier to analyse as compared to the general case;
in [6] special type of initial conditions were considered, closed-form solutions were obtained for
equation (1), and explicit formulae for the peak magnitude and peak instant were derived. Here
we consider the canonical initial conditions (2).

Let us first analyze the simplest case n = 1; i.e., the second-order equation. From (6) we have

a = 1 + α, 0 < α < 1, b = a2/4,

so that the roots of the characteristic equation are equal to λ1 = λ2 = ρ = a
2 < 1. For the initial

conditions x−1 = 0, x0 = 1 we immediately obtain

xk = (k + 1)ρk, k = 1, 2, . . . (7)
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and the peak magnitude is easy to evaluate. For the peak instant we have

k∗ = max{k : xk−1 < xk}

and by differentiation in k we arrive at

k∗ =

⌊
ρ

1− ρ

⌋
=

⌊
1 + α

1− α

⌋
. (8)

Substitution of k = k∗ in (7) leads to the following lower bound for the peak magnitude:

κ >
( ρ

1− ρ
+ 1

)
ρ

ρ
1−ρ >

2

(1− α)e
.

Therefore, these two formulae show that even for the second-order equation both the peak
instant and the peak magnitude can take arbitrarily large values as α → 1; i.e., as the coefficients
approach the boundary of the stability domain.

3.2.4. More on conservatism of estimate (4). We now consider the general case n > 1. As
we have already mentioned, over the first n iterations the solution has the form (3). It increases
monotonically for any feasible a, and κ∗ = an can be adopted as a lower bound on peak. It can
be shown that, for the initial conditions (2) and a, b of the form (6), the solution xk is unimodal,
and the peak value is equal to xn = an if and only if xn > xn+1 = an+1 − b. With account to the
expression (6) for b we see that for

1 < α 6 α1 =
nn+1

(n+ 1)n+1 − nn
≈

1

e
,

the peak value is given by κ1 = (1 + α/n)n ≈ eα, and for α > α1 it takes greater values.

Example 2. For n = 10 we have α1 = 0.3232, and κ∗ = 1.3745 gives the exact value of the peak
magnitude for all α 6 α1. However for α = 0.9, the true value of peak is equal to κ = 7.5965 ≫
κ∗ = an = 2.3674, and it is attained at step k = 106 ≫ n. For comparison, the magnitude of peak
under (presumably worst-case) initial conditions x(0) = (−1, . . . ,−1, 1) is equal to κ = 14.4601.

Hence, as for the coefficients a, b of the general form, the estimate κ∗ of the peak magnitude
may happen to be very poor if α > α1. Below, a much more accurate estimate will be obtained.

3.2.5. A closed-form lower bound. Having formula (7) in mind, by inducion in n we obtain the
following result.

Assertion 2. For any k > 1, the solution of (1) with coefficients (6) and initial conditions x(0) =
(0 . . . , 0, 1) is bounded from below by

xk > yk =
2

n+ 1
(k + 1)ρk, k = 1, 2, . . . . (9)

For large values of k this estimate represents the asymptotics for the solutions of xk.

The peak instant k∗y for the sequence yk can be adopted as an estimate of the true peak instant k∗:

k∗ ≈ k∗y =

⌊
ρ

1− ρ

⌋
=

⌊
n+ α

1− α

⌋
. (10)

Respectively, by substituting the right-hand side of (10) into (9), we obtain the following estimate κ̂y

of the peak magnitude for xk:

κ > κ̂y ≈
2

(1− α)e

n+ 1

n+ α
. (11)
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Fig. 3. The actual solution xk (upper curve) for n = 10, α = 0.8; the values at the endpoints of the first six
(n+ 1)-tuples (bold dots); the values of yk (lower curve).

0

5

10

15

x
k

0 100 200

k

300 500400

Fig. 4. Same as in Fig. 3, but for α = 0.95.

An interesting observation can be made from formulae (10) and (11). Increase in the order n
under fixed α leads to an increase in the value of the peak instant, whereas the change in the peak
magnitude itself is very small. On the other hand, for n fixed, increase in α leads to an increase of
both quantities. This picture differs from the one observed for equations of the general type, where
both these quantities (as a rule) grow with increasing order of the equation and the coefficients
approaching the boundary of the stability domain; see the results in [6].

Example 3. In Fig. 3, the upper curve corresponds to the solution xk for n = 10, α = 0.8 (also,
bold dots indicate the values of the trajectory at the endpoints of (n + 1)-tuples mentioned in
Section 3.2.2), and the lower curve to the estimate yk.

The true value of peak is κ = 3.9227, and it is attained at step k∗ = 51. Estimates (11) and (10)
give κ̂y = 3.7469 and k∗y = 54; the relative error of the estimate is approximately 4.5%.

For the same value α = 0.8 but for a higher order n = 20 of the equation, we obtain almost the
same value κ = 3.9274 for the peak magnitude, but essentially larger value k∗ = 97 for the peak
instant. The difference with the previous experiment is explained by expressions (11) and (10).

On the other hand, for the same n = 10 and a much higher value α = 0.95, the estimates give
κ̂y = 14.7824 and k∗y = 218, whereas the true value of peak is equal to κ = 14.9517, and it is
attained at step k∗ = 216, see Fig. 4. Both the peak magnitude and the peak instant grew up
significantly; the relative error of the estimate yk is slightly more than 1%.

AUTOMATION AND REMOTE CONTROL Vol. 85 No. 6 2024
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Therefore, the accuracy of estimate (9) increases as the value of α approaches unity, which is
exactly the case when peak is observed at distant iterations and the application of the general
formula (5) requires some effort.

3.2.6. Yet another parametric family. We briefly discuss yet another parametric family of
equations (1), which is defined by

a = 1 +
1

n
− ε, b =

1

n

with 0 < ε < 1
n and initial conditions (2). For small ε, the feasible point (a, b) is located close to

the right corner of the domain Sn. As ε → 0 and n fixed, the peak magnitude increases (since the
maximum in absolute value root of equation (1) tends to ρ = 1 with multiplicity two), and this
behavior is typical to equations of the general form; see [6].

Let us now fix a small vlue of ε and increase the order n of equation. In contrast to the setups
considered in [6] (increase of the peak magnitude as the order increses), here we observe just the
opposite phenomenon: The value of peak decreases as n grows, and for n > ⌈1ε ⌉ there is no peak
at all. A trivial explanation of this fact is that the point (a, b) approaches the point (1, 0), which
belongs to the no-peak domain C.

3.2.7. Corner points of the domain Sn. For certain specific coefficients (a, b)∈Sn, the closed-
form solution can be obtained and its behavior can be analyzed. For instance, these are the corner
points of the stability domain.

The first “trivial” points are given by a = 0 and b = ±1 (the upper and lower corners in Fig. 1).
For b = 1, the roots of the characteristic polynomial p(λ) = λn+1 + 1 are roots of minus unity. They
are evenly spaced on the circle of unit radius and we arrive at the result that immediately follows
from Assertion 1 or it can be obtained by direct calculations.

Assertion 3. For a = 0, b = 1 the solution of (1), (2) has the form

xk =

{
0 for mod(k, n) 6= 0,

(−1)m for mod(k, n) = 0.

For b = −1, the picture is pretty much the same, but the nonzero values of the solution are equal
to plus unity.

A more interesting corner point is a = n+1
n , b = 1

n and its symmetric a = −n+1
n , b = 1

n
(or b = − 1

n), see Fig. 1; they both belong to the parametric family (6) with α = 1. In that case, the
largest root is ρ = 1 and it has multiplicity two. In contrast to the previous case, the solution xk
diverges, and from Assertion 2 it follows that its growth is at least linear in k. More accurately, we
have the following result.

Assertion 4. For a = 1 + 1
n , b =

1
n , the asymptotics of the solution of equation (1), (2) is given

by

xk ∼
2(k + 1)

n+ 1
+

2

3

n− 1

n+ 1
=

2k

n+ 1
+

2

3

n+ 2

n+ 1
.

An illustration for n = 10 is presented in Fig. 5; the asymptotic formula is seen to be quite
accurate even for small values of k, and the solution very quickly reaches the asymptotics.

3.2.8. An illustrative example. We finally present a numerical illustration of the magnitude of
peak of solutions of equation (1) with initial conditions x(0) = (0, . . . , 0, 1) and arbitrary coefficients
(a, b)∈Pn.

In the simplest case n = 1, the peak domain is the triangle P+
1 = {1 < a < 2, a− 1 < b < 1} on

the plane of the coefficients and it symmetric P−
1 = {−2 < a < 1, a+1 < b < 1}. As shown above,

peak takes place for all points in P+
1 and P−

1 , and its minimum value is equal to |a|.

AUTOMATION AND REMOTE CONTROL Vol. 85 No. 6 2024



PEAK EFFECTS OF SOLUTIONS OF A CLASS OF DIFFERENCE EQUATIONS 595

Fig. 5. The solution of equation (1), (2) for a = 1+ 1

n
, b = 1

n
, n = 10 (solid line) and its asymptotics (dotted

line).

Fig. 6. The magnitude of peak at various points of the domain P+

1 .

The following experiment was conducted. We sampled N = 10000 points randomly uniformly
over the domain P+

1 and computed numerically the peak value for every equation with coefficients
being the coordinates of the generated points. Figure 6 depicts the domain P+

1 (bold-line triangle)
and the values of peaks of solutions of the corresponding equations. The domain of large values of
peak is seen to be small and, in accordance with similar experiments, it gets smaller as the order n
increases. However, in compliance with the results presented adove, the peak magnitude may take
arbitrarily large values for the coefficients located closer the boundary of P+

n .

4. CONCLUSIONS

We analyzed peak effects of solutions of a well-known trinomial difference equation, which has a
transparent pratical origin. It is shown that peak is inevitable if the coefficients belong to certain
subsets of the stability region; also, it was demonstrated that the magnitude of peak and peak

AUTOMATION AND REMOTE CONTROL Vol. 85 No. 6 2024
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instant can take arbitrarily large values. Exact expressions for the magnitude of peak and peak
instant or closed-form lower bounds are obtained for certain specific values of the coefficients and
intial conditions.

Further research assumes the analysis of the nonasymptotic behavior of solutions of other families
(a, b)∈Pn; in particular, the ε-parameterized family from Section 3.2.6, as well as other special-
type equations; e.g., those considered in [17]. Upper bounds on the value of peak are also worth
paying attention for.
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